eagle-i eagle-i Network Shared Resource Repositoryeagle-i Network Shared Resource Repository
See it in Search
This page is a preview of the following resource. Continue onto eagle-i search using the button on the right to see the full record.

VA-Squish: Determining Cartilage Linear Biphasic constants from Indentation test

eagle-i ID

http://shared.eagle-i.net/i/0000013a-23b6-dae9-e36c-637980000000

Resource Type

  1. Software

Properties

  1. Resource Description
    ***New Release - version 2.1: please update*** Indentation testing is commonly used to test cartilage material properties. Using a linear biphasic material model, the determination of three material constants (aggregate modulus, Poisson's ratio, and permeability) from the test results requires an optimization or curve-fitting approach to determine a solution that best matches the experimental creep or stress-relaxation data. The VA-Squish project developed a fast and easy way (using MATLAB) to calculate the best-fit bi-phasic constants, based on input from a standardized indentation test. This method involves creating a multi-dimensional Cartilage Interpolant Response Surface (CIRS) map from a large number of solutions obtained from finite element analyses and then searching this surface map for the closest solution. CIRS maps were generated for a range of different testing conditions. Response surface files have been generated for a specific set of test conditions. It is recommended that anyone who is considering performing tests choose a test setup and testing parameters that exactly match one for which a response surface exists. These are given in the downloads section of this website and are listed in Table 2 of the VA-Squish User Guide. Flat, porous indenter contact has been modeled as both frictionless and with a coefficient of static friction. The improved model which incorporates friction is a more accurate model of the experimental conditions. Additionally, the new release, v2.0, includes an improved mesh which is double biased through the radius and biased through the thickness. Keywords: Biphasic material properties, Cartilage, Indentation testing
  2. Contact
    Keenan, Katy
  3. Used by
    Stanford University
  4. Version
    2.1
  5. Website(s)
    https://simtk.org/home/va-squish
 
RDFRDF
 
Provenance Metadata About This Resource Record

Copyright © 2016 by the President and Fellows of Harvard College
The eagle-i Consortium is supported by NIH Grant #5U24RR029825-02 / Copyright 2016